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Abstract

Statistical procedures for testing hypotheses concerning fishery contribution rates
based on recoveries of coded-wire-tagged (CWT) salmon are described. Observed
recoveries of CWT fish from one or more release groups to one or more fisheries are
modeled with compound probability distributions, one component reflecting natu-
ral variation and the other representing the catch sampling variation. We describe
a flexible bootstrap testing procedure suitable for a wide range of hypotheses, ver-
ify its accuracy by simulation of compound probability distributions, and apply it

to a set of real CWT recoveries.
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1 Introduction

Fishery managers and scientists raise many questions about the survival, the catch
distribution, and the migration patterns of salmon. Some of these questions can
be formulated in terms of contribution rates to one or more fisheries (including
escapement}. For example, does a particular feeding regime at a hatchery increase
the contribution rate to a specified fishery? Or, more generally, does a set of
hatchery treatments have differing effects on a vector of contribution rates? Do
the hatchery releases on a river system have the same catch distribution or profile
as the wild stock native to the river system?

Recoveries of coded-wire-tagged (CWT) salmon in fisheries’ catches and on the
spawning grounds provide the basic data for attempting to answer these questions.
The primary objective of this report is to describe a flexible procédure for testing
some oi" these hypotheses using information provided by CWT recoveries.

Coded-wire-tags are implanted in the heads of young salmon, generally at the
smolt stage, that are about to be released from a hatchery or that are wild stock
netted in a river system. Later in the life cycle the catches of intercepting fisheries
are subsampled to recover the adult CWT fish. A compound probability distri-
bution, the binomial-hypergeometric, to model the number of recoveries of CWT
salmon in a fishery’s catch was proposed earlier by Newman (1990). (A math-
ematically similar, but conceptually different. model was proposed by Clark and
Bernard (1987).) This probability distribution explicitly accounts for two different,
successive levels of randomness or uncertainty that induce variation in the number
of observed recoveries in a catch sample. Conventional testing approaches such
as t-, chi-square, and F tests are inappropriate under the compound distribution
model because of the second level of variation induced by catch sampling. In this

paper we present a general statistical procedure for conducting hypothesis tests



based on compound probability distributions.

The structure of the paper is as follows. First we briefly describe the binomial-
hypergeometric distribution and present some extensions. Next two hypotheses of
general interest are briefly described. The following section describes monte carlo
testing, bootstrap testing, and the iterated bootstrap testing procedure proposed
by Beran {1988). The next section presents both the results of computer simula-
tions as well as results for a real data set. The last section discusses the procedure

and suggests areas of additional work.

2 Compound distributions for CWT recoveries

2.1 Notation and terminology

The following symbols will be used.
Pij: contribution rate or survival rate of release group i to fishery j

rij: relative contribution rate to fishery j of release group i, i.e., the contribution of group i to

fishery j divided by group i’s contribution to al] fisheries

R;: release group i's sizc-_:
a;;: actual contribution of release group i to a fishery }
f;: catch sampling fraction for fishery j
ojj: observed recoveries of a release group i in fishery j’s catch sample
b;: contribution of fish other than relevant release groups to fishery j
Cj= 3 ,a; + b, total catch of fishery j
n;= {;.C;. catch j sample size (in practice an integer)

Contribution rates of interest are often the sums of contribution rates to several
sub-fisheries. By sub-fishery is meant a fishery for which a single sample of the

catch is drawn. For example, the contribution rate of coho salmon, Oncorhynchus




kisutch, from a specific release group to the Oregon ocean troll fishery in June is

the sum of contribution rates made to all the different sub-areas off the Oregon

coast by day and landing.

2.2 The distribution of observed recoveries

The assumptions are as follow. A release group contains R tagged fish, the fate
of each fish with respect to its being caught or not caught by a specific fishery,
designated by a 1 or 0, respectively, is independently and identically distributed
as a Bernoulli(p) random variable. A simple random sample is drawn without
replacement from the fishery’s catch, which includes fish from other sources as
well. The catch sampling rate is a fixed rate, and the catch of other fish is also
assumed to be a fixed number.

From these assumptions a compound distribution results. The distribution of
the number of tagged recoveries in the catch, a, is Binomial(R,p). Conditioning on
the number of tagged fish in the total catch, the number of tagged fish recovered in
the sample, o, follows a hypergeometric distribution, o~ Hypergeometric(C, a,n).
The distribution of observed fish is found by summing the joint distribution of
tagged fish caught in the fishery and tagged fish observed in the catch sample over
all possible values of tagged fish in the fishery:

R (5) (hmo
PrlO=0]=) Prfa,0=0o =3 (f) p*(1 — p)-=. -—(-a—(:b—)-—l
This distribution is referred to as the binomial-hypergeometric distribution for
observed recoveries.

If the contribution of two release groups of sizes R; and R;, respectively, to

a single fishery are considered, the joint distribution of the observed recoveries is

product binomial-multiple hvpergeometric:
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The ‘product’ binomial reflects the independence of the two release groups.

If two release groups of sizes Ry and Ry, respectively, contribute to two fisheries,
say, then the joint distribution of observed recoveries in the two fisheries from the

two release groups is product multinomial-multiple hypergeometric:

Pr{O11 = 011,012 = 012,021 = 021,032 = 023] =

Ry Ri—epn Ry HRz—an
S 3 X Y Prfan,a12,001,82,0n = 011,012 = 013,001 = 021, 093 = 032] =

413 =011 G12=0172 421021 322=072
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One assumption that is clearly false is that the catch of other fish, b, is a
constant. However, results of computer simulations treating catch as a random
variable or as a constant have not indicated that this is a critical assumption in
terms of variance estimation of the estimated contribution rate or in hvpothesis
testing.

More critical, perhaps, is the assumption of independence at the Bernoulli
stage given the fact that fish school. This issue was studied for various ocean
troll fisheries and there was no evidence for clustering of the recoveries from the
same release group. More work is necessary, however. to determine if the lack

of clustering was due more to randomness in the troll fishing process than actual

independence in the fish’s behavior.




2.3 Estimation of contribution rate

The estimator of contribution rate used in practice is quite simple and natural. If
the total number of tagged fish in the catch were known, namely a, then f = ¢/R
would be the standard estimator for a Bernoulli sample. However, since a is

unknown and an unbiased estimate of ¢ is @ = 0- C/n, a natural estimate of p is

2. 0C __ e
P=xR= 7R

This is a method of moments estimator since the catch sample proportion of
tagged fish is substituted for the true proportion of tagged fish and the estimated
true proportion of tagged fish is substituted for the distributional proportion. It

is also unbiased:

B() = g Elo) = g EElele) = - Ealf @) =,

Method of moments estimators are asymptotically consistent, i.e., as the sample
size, or in this case the release size, increases, the estimator converges to the true
value with high probability (Bickell et. al. 1977). In most practical situations
this estimator is reasonable. As an example of an impractical situation that leads
to a ridiculous estimate, suppose that 10 fish are released, 20% of the catch is

sampled, and 4 recoveries are observed. The method of moments estimate of the

4
0.20-10

An alternative estimator that does not lead to such potentially ridiculous es-

contribution rate is =2
timates is the maximum likelihood estimator. mle. Numerically, however, the
calculation of the mle is much more difficult since maximizing the likelihood in-
volves summing over all possible values of tagged fish. a, in the catch. In particular

the mle, Py, is the value of p that will maximize

min(R.C—-(n-o)} e\ (Cea
L{pio.C.n) = Z (f) pa(l_p)_q_a.(o)((;.).g)
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Note that the likelihood function is expressed in terms of C and n, rather than
f and b. b, the catch of other fish, is essentially a nuisance parameter, whose
estimation can be bypassed since the total catch, C, is a fixed and known quantity
after the fact. For large samples maximum likelihood estimators are approximately
normally distributed with a mean equal to the parameter and a variance equal to
the inverse of Fisher information (Bickell et. al. 1977). This calculation in practice
would be very difficult.

Fortunately, given typical release sizes, the mle and the method of moments
estimator probably do not differ very much. Since both are consistent estimators
and the release sizes are generally very large, the method of moments estimator
should be adequate.

‘A method of moments estimate of a contribution rate that is the sum of k

sub-fishery contribution rates is simply the sum of the individual contribution rate

estimates: p = 5, ..

2.4 Variance and covariance estimation

For the sake of com;;leteness we present the variance and covariances for contri-
bution rate estimates. For some relatively simple hypotheses standardized test
statistics will be approximately normally distributed and variance and covariance
estimates are necessary. The testing procedures described later in the paper do
not depend upon these estimates, however.

A variance estimate for p that was given in Newman (1990) is

N (1-f)b (Rp+5)*~(1-p)
V = . .
(p)=p/R- g+ 7 (Rp + b)3

An alternative variance estimate based on the assumption that total catch and




sample size are fixed numbers is

V) = g {1-af + (R- 1[5 - 1]}

Assuming that C = pR+b, the two estimators differ very slightly over a reasonable

range of contribution rates.

Some useful extensions of these results include the variance for a contribution
rate estimate that is the sum of several sub-fishery contribution rate estimates and
the covariance of the contribution rate estimates from two different release groups.

The results are summarized below and the derivations are in an appendix.

1. The variance for a contribution rate estimate from a single release group

summed over several fisheries, say 1 through k, is

V(Ec—l ;91) E::l Var(P:) E:(J Pth/R

2. The covariance of the contribution rate estimates for a single fishery from

two different release groups, say A and B, is

Cov(py.b5) = p"p"’[.(ﬁa"(f-::f)lr% lj'

3. Combining the above 2 results: the variance of the difference in contribution

rates, summed over k fisheries. between two different release groups is

k k k k
Z Zf’ = Z"(ﬁqi)'*'zv(ﬁsi) 2 ZPASPAJ
=1 i=1 t=1 =1 A igj
2 k d C;(n,- - 1)
— == 2 _pBipB; — 2 P.:Pi[—'—l]
RB % BiPBj ; A1 VB (C| _ 1)”-;’



Note that for simple hypotheses of equality of contribution rate to a single
fishery for two different release groups, these estimated variances could be used in
the common normalized test statistic. Le.,
"= M.
Var(py — pp)

Over the range of contribution rates generally observed, rarely more than 15%,
calculations of symmetric confidence intervals based on the above variance calcu-
lations and the standard normal approximation are not recommended. As pointed
out in Schnute (1992) the exact confidence intervals based on the likelihood lead to
asymmetric confidence intervals. It is the combined complexity of the likelihood
function with compound distributions and the types of hypotheses to be tested
in practice that motivated us to seek an alternative testing procedures. Before
discussing the testing procedure, however, we briefly describe the two hypotheses

commonly of interest to salmon fishery managers and scientists.

3 Hypotheses of interest

In this report we will focus on just two hypotheses, but the general procedure
extends to testing more complex hypotheses. The first is that the contribution

rates to a vector of r fisheries is the same for k different release groups. More

succinctly,

H,: Pu=pn=...=pn

P12 = P22




The second hypothesis, often of interest to fishery managers, is that the catch
profiles of two groups are the same. What we mean by catch profile is the pro-
portion of fish caught by area (or time or both}) conditional on being caught. e.g.,
30% of the fish caught are caught off the Oregon coast, 50% off the Washington

coast, and 20% off the British Columbia coast.

Ho: rMpi=rm=...=Tr

rMz=Tz=...=Tr2

Tir =T2r = 00 =Ty

If there was no sampling of the catch, i.e., a complete census of the catch
was taken, then standard statistical procedures for the comparison of multinomial
samples could be conducted to test the first hypothesis. One approach would be a

chi-square test of homogeneity (Snedechor et. al., 1980).

As mentioned earlier, in practice the single dimension outcome will often be
the sum of contributions to several fisheries. Tests of equality of a ‘summed’ con-
tribution rate do not necessarily imply that each individual component is equal.
One could, for example, hypothesize that the combined contribution rate of some
stock to fisheries A and B is 0.10 for release groups 1 and 2, but release group !
contributes 0.035 to both fisheries while release group 2 contributes 0.03 to fishery
A and 0.07 to fishery B. In most Eases, however, we believe that the person for-
mulating a hypothesis of equality is likely imagining that the two release groups
are essentially identical in survival rates and migration pattern. Hence, equality at

the combined level will generally be the result of equality at the component levels.

11




4 Monte Carlo and Bootstrap Testing Proce-
dures

The iterated bootstrap test (Beran, 1988) is an extension of a bootstrap test and
the bootstrap test is a variant of Monte Carlo testing (Besag et. al., 1977). The
principle idea for all three methods is to simulate the distribution of the test
statistic and estimate the p-value based on the simulated distribution.

Quite briefly, Monte Carlo tests are based on the rank order of a test statistic
calculated from the collected data relative to computer generated test statistics
based on the null hypothesis (Besag et. al. 1977, Ripley 1987). In other words,
based on the rpa,rameter values specified by the null hypothesis, pseudo-random
data is generated and the test statistic is calculated. This process is repeated
several times and the rank order of the actual data’s test statistic is calculated. If
large test statistic values suggest deviations from the null hypothesis and the rank
order of the test statistic is above the (1-@)th percentile, then the null hypothesis
can be rejected at the « level. The main advantage of Monte Carlo tests is that the
sampling distribution of a test statistic does not have to be calculated, which can
in some non-standard settings be quite difficult. A secondary advantage as stated
by Besag (1977) ‘the investigator is free to use a variety of informative statistics
of his own choosing, rather than be dictated to by known theory’.

As an example of a Monte Carlo test, consider one of the simplest hvpotheses-

that a release group contributes at a specified rate to a specific fishery, i.e..
H,:p=p,.

Let T = =Pl serve as a test statistic. Deviations from the null hvpothesis

Var(p)
will be reflected in relatively large or small values of the test statistic. By relatively

large or small is meant values that would occur only a% of the time under the null
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hypothesis. The procedure of Monte Carlo testing is to generate m-1 realizations
of the test statistic under the null hypothesis and to use the rank order of the
observed test statistic to provide an estimate of the p-value. If the observed test
statistic’s distribution does not depend on the value of the parameter, then this
procedure provides an exact test at levels that are multiples of 1/m (Hall et. al.

1989).

For many of the more complicated hypotheses, such as
Hy:p1=p2

or
Hy:pp=po=...=py,

the null hypothesis values are not specified. Therefore, the distribution of the data

under the null hypothesis is not known. If a sample-based estimate of the param-

eters is substituted for the unknown parameter and the Monte Carlo approach is

applied, one has a bootstrap test.

Bootstrap tests will in most cases be biased unless the test statistic’s distri-
bution under the null hypothesis does not depend on the true parameter value
(Beran 1988). lLe., the probability that one is testing at will not equal the true
probability of Type 1 errors (the probability of rejecting the null hypothesis when
it is true). The magnitude of the bias, however, depends on the sample size, or
with the compound distributions on release size (and to some degree on the catch
sampling fraction).

Beran developed a procedure that provides a means of adjusting the bootstrap
test p-value to get it closer to the true value (Beran 198S), whether or not the test
statistic’s null distribution depends on the unknown parameter value. There are
some technical conditions that are sufficient for his results to hold. Primarily, one

wants the estimated parameter value to be (root n) consistent, which the method
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of moments estimates are, and that the bootstrap test statistic’s distribution can
be decomposed into an asymptotic expansion based on true test statistic’s dis-
tribution. The latter condition we have not established, but simulations did not
indicate any problems.

We refer to Beran's algorithm as the iterated bootstrap test. The procedure
is as follows. Let the original sample size be j. Assume that a test statistic is

chosen such that the larger' its value, the less consistent the data is with the null

hypothesis.

1. Using a sample based estimate of the unknown parameter(s), generate m
realizations of the sample, i.e., parametric bootstrap samples of size j, and
calculate the corresponding m test statistics. Let p; represent the relative

rank or bootstrap p-value:

(#FTr->T)+1
m+1 '

m=

2. Now treating each of the m empirical bootstrap distributions as the true
distributions, draw n samples of size j from each distribution (this is the
‘iterated’ bootsi:rap portion). Calculate n test statistics for each of the m
bootstrap distributions. For each of the m sets, calculate the bootstrap p-
values, say pi,: = 1...m, using the first level bootstrap sample test statistic,
T7,i=1...m and the second level bootstrap sample test statistics. Le.. this

is the first step repeated m times.

3. The relative rank of p; compared to the p; sample is the adjusted or iterated

bootstrap p-value, p,.
(#p°<p)+1
n+1 )

pz“.:

If the adjusted p-value differs little from the original, first stage p-value, then the

bias in the first stage bootstrap p-value is not too large.
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4.1 Application of bootstrap tests to the compound dis-

tributions

To evaluate the testing procedure, we simulated recoveries of CWTs to fishery and
calculated single and iterated bootstrap p-values. And as an application we exam-
ined a real data set based on recoveries of coho released from a coastal Washington
hatchery.

For the simulation, comparisons were made between two release groups con-
tributing the same fishery, i.e., a product binomial-multiple hypergeometric distri-
bution. The null hypothesis is H, : p1 = p;. The algorithm is as follows. For each
iteration of the simulation two binomial random variables are generated. The catch
of ‘other’ fish makes up the difference between the fixed total catch and the con-
tributions from the two groups. A simple random sample (with size being a fixed
fraction of the catch) is drawn without replacement and the observed recoveries of
the three different groups are noted. Using the estimated contribution rate for a
given iteration, 99 new realizations are simulated, the two test statistics calculated,
and the bootstrap ptvalue determined. Within each of these 99 new realizations,
the simulation is re-iterated to generate the iterated bootstrap p-value.

Adequacy of the procedure is evaluated graphically using histograms of the
iterated bootstrap p-values and qg-plots against the uniform(0.1) distribution and
analytically by Kolmogorov’s goodness of fit test (Bickell et. al. 1977) applied to
the uniform distribution. As an explanation of the reason for comparison to the
uniform(0,1) distribution, consider the following. If the null hypothesis is true, and
the test statistic is unbiased, then the probability of the test statistic exceeding
the 1-a quantile of its distribution is simply a. So the observed p-value should be
< a, a% of the time- the definition of a uniform(0,1) random variable.

For the real data analysis, 18 release groups from the Grays Harbor region of
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the Washington state coast are compared with respect to their contribution rates,
Ho:pj=pji=...=psj J=1...,11;

and contribution profile,
Hy:mj=rmj=...=rg;. j=1,...,1L

to 11 different fisheries. See tables 1 and 2 for details of releases and recoveries.

Table I n

Under the null hypothesis of identical contribution rates, the combined estimate here

of contribution rates, a vector of length 12 (with the 12th category being fish dying
elsewhere), was used to generate the multinomial bootstrap samples. Within each
catch a simple random sample was drawn without replacement thus generating
multiple hypergeometric random variables. The multiple hypergeometric samples
were drawn assuming that the sampling fraction was the same as that observed.
One point to make is that the fisheries were so highly aggregated spatially and
temporally the recoveries in actuality are drawn from samples of many catches.
Simulating the observed recoveries by drawing from the aggregated catches gener-
ates variability that 1s larger than what would be observed by drawing a stra;.iﬁed
random sample, which is somewhat closer, perhaps, to reality. The effect of larger
variability, however, is to make the testing procedure more conservative, i.e., less
likely to falsely reject the null hypothesis if in fact it is true.

To test the null hypothesis of identical contribution profiles, bootstrap samples
for each stock were generated separately using the stock-specific estimated contri-
bution rate to all 11 fisheries combined. Then for each stock the total contribution
was randomly assigned to each fishery using a common vector of proportions, es-
timated from all 18 stocks combined.

For both tests of the real data, n=99 and m=99 iterations were used, thus

generating 99 x 99 or 9.801 samples.

16

Table 2 r

here




5 Results

Simulation results are shown in Figures 1 and 2 for contribution rates by two groups
of 0.01 to a single fishery. The release sizes were 10,000 for both groups, the total
catch was fixed at 2,000 fish (so the expected number of ‘other’ fish is 1,800),
and the sampling fraction was 0.20. Figures 1 and 2 are histograms and quantile-
quantile plots of the bootstrap and iterated bootstrap p-values, respectively, based
on 600 simulations. When the null hypothesis is true, then the p-values should
approximately follow the uniform(0,1) distribution. One can see from the plots
that the p-values follow the uniform distribution fairly closely. Kolmogorov’s test
statistic was non-significant (p>0.03). -

For the Grays Harbor dar.a.., the hypothesis of equal contribution rates was easily
rejected, the p-value was 0.01 for both the single and iterated bootstraps. Con-
tribution rates to one of the British Columbia fisheries in particular varied widely
amongst the 18 stocks. On the other hand the hypothesis of equal contribution
profiles was not rejected, the iterated bootstrap p-value=0.68 (single bootstrap p-
value 0.63). So while the absolute contribution rates did differ significantly there
was no evidence suggesting that the contribution pattern differed significantly.

The rejection of the hypothesis of identical contribution rates for the 18 stocks
is not surprising when a plot of the rates is examined. Figure 3 is a plot of
the absolute contribution rates for all 18 stocks to the 11 fisheries. The line going
across the plot represents the estimated average contribution rate based on the null
hypothesis of equality. The contribution rates to the second fishery, which is the
British Columbia fishery 10, differs widely between stocks. The total contribution
rates to the fisheries differs widely as well.

On the other hand, the relative contribution rates. while still rather variable,

were consistent with the null hypothesis of identical contribution profiles. See
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figure 4. Presumably the variation in relative contribution rates is high enough
under the null hypothesis for the observed pattern to be well within what would
be expected. While the survival rates differ between the stocks, the migration

patterns (and vulnerability to fishing mortality) appear to be similar.

6 Discussion

Building on the binomial-hypergeometric probability distribution, a computer in-
tensive testing procedure was presented. Computer simulation-based comparisons
of the procedures for one simple case demonstrated that both the single bootstrap
and the iterated bootstrap procedures are accurate. The bootstrap test’s primary
ad;'anta.ge is its extreme flexibility, especially dealing with complex hypotheses.
However, it can be very computer intensive, especially if the second iteration is
thought necessary. Over the range of release sizes examined, both real and sim-
ulated, the difference between the bootstrap and iterated bootstrap p-values was
minimal. This is likely due to the fact that the magnitude of the bias of the boot-
strap test is quite small for release sizes on the order of 10,000. In practice, it may
be quite acceptable to simply use a bootstrap test for the compound distribution
for most test statistics of interest. ‘ |
As an alternative to bootstrap tests, likelihood ratio test statistics can be cal-
culated as well to test many hypotheses. The chief disadvantage, however, is the
likelihood calculation quickly gets complicated for tests such as the test of equal
contribution profiles. The likelihood ratio test statistic's null distribution would be
approximated with the chi-square distribution and holds no real advantage over the
bootstrap tests with respect to accuracy (Beran, 1988). An exact test procedure
has been formulated for the special case of comparing two groups’ contribution

rates to a single fishery (J. Besag, Department of Statistics. University of Wash-
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ington, Seattle, WA 98195, personal communication). This may be the focus of
future efforts.

Another possibly important line to pursue is to study the power of various
test statistics for particular hypotheses. Likelihood ratio statistics are most pow-
erful in many settings, at least asymptotically, but difficult to construct for some
hypotheses. A related issue is the use of ‘studentized’ test statistics, i.e., test
statistics expressed in fractional for where the denominator is the standard error
of the numerator. To some degree this can reduce the degree of dependence of
the test statistic’s distribution on the unknown parameter, and, therefore, improve
the accuracy of the single stage bootstrap adequate. Simulations of compound
distributions with moderately large release sizes, however, did not show noticeable
differences in p-values between studentized and non-studentized statistics. Again
the magnitude of the release sizes is such that the bias in single stage bootstrap
tests is likely small even when the test statistics distribution depends on the un-
known parameter,

Another approach is to approximate these numerically tedious compound dis-
tributions with analytically cleaner distributions. Simplifying approximations,
such as binomial-binomial, say, or Poisson distributions have been suggested by
Schnute (1992) and are implicit to generalized linear models for CWT recover-
ies (J. Schnute, Canadian DFO, Pacific Biological Station, Nanaimo, B. C. VOR
5K6, Canada, personal communication). However, based on analytical calcula-
tions of variance estimates for contribution rates, comparisons between binomial-
hypergeometric, binomial-binomial. and Poisson distributions have yielded strik-
ingly different results for many reasonable parameter values. The binomial-hypergeometric
has a consistently lower variance than the other two procedures. The primary rea-
son for the inefficiency of the approximations is due to the magnitude of the catch

sampling fraction, ranging from 20 to 30%. The binomial approximation to the
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hypergeometric works best when the sampling fraction is 5% or less. Still such
approximations may be effective for simply detecting differences between groups.

Finally, there is a pressing data need. The compound distribution test statistics
rely upon knowledge of the catch and sample size associated with each observed
CWT recovery. Unfortunately many of the current data bases fail to provide this
simple piece of information. Instead most CWT data bases contain information
about sums of observed recoveries by a particular fishery, identified by time, area,
and gear, and an estimate of actual recoveries, commonly called expanded recov-
eries. Further, the fishery is often the aggregation of several sub-fisheries, where
sub-fisheries are defined as catches from which a single simple random sample is
drawn. Since one component of variation in observed recoveries is clearly that
induced by catch sampling, we do not believe that any testing procedure will be
accurate that does not in someway account for that variation. The most straight-
forward answer to this problem is to ensure that data bases are detailed enough

to provide catch and sample information at the level of each observed recovery.
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A Derivation of variances and covariances for
contribution rates

1. The variance for a contribution rate estimate from a single release group

summed over several fisheries, say 1 through k, is

V( |=1 pl) - Za_l 1’ ar(pl) a_A(J pipJ/R

proof:

k k k
V(L 8) = Y Var(g)+23 Covlh, ;)

=1 ’ =1 i<y

where
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2. The covariance of the contribution rate estimates for a single fishery from

two different release groups, say A and B, is

[R~]
]
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Table 1. 18 Grays Harbor coho release groups’ sizes and 11 ocean fisheries’

catch and sample sizes. Releases are 1982 brood year and fisheries’ catches are for

1985.
Release Data Catch Data
Tagcode Release Size Agencyt Yr Fishery Catch Sample
211626 13,701 CDFO 85 23 681,358 182,978
632453 7,424 CDFO 85 10 2,241,052 445,504
632547 9,166 WDF 85 45 183,264 26,723
632743 48,935 WDF 85 42 83,163 40,965
632744 48,010 WDF 8 41 101,159 52,155
632745 50,538 WDF 85 23 1,101,170 228,354
632746 49,676 WDF 85 22 34,796 12,949
632861 45,404 WDF 8 15 79,443 9,640
632862 50,231 WDF 85 10 128,733 20,495
633017 48,976 ODFW 85 40 182,486 84,664
633018 49,913 ODFW 85 10 74,558 34,712
633027 31,602
633046 10,760
633047 20,910
633048 18,033
633061 10,717
633062 7,663
633107 4415




t CDFO=Canadian Department of Fisheries and Oceans, WDF=Washington De-
partment of Fisheries, and ODFW=0regon Department of Fisheries and Oceans.




Table 2. Detailed expanded recovery information for the 18 Grays Harbor coho

release groups by tag code and fishery.

Tag Code:Fishery
CDFO CDFO WDF WDF WDF WDF WDF WDF WDF ODFW ODFW

23 10 45 42 41 23 22 15 10 40 10

21626 ©0 133 6 3 1T 5 0 12 8 0 0
632453 0 6 0 0 ©O0 O O 0 0 0O 4
632547 0 23 0 o0 0 O 0 ©© 0 5 4
632743 0 5 ©0 8 0 0 18 T 0 0 0
632744 0 163 0 16 7 6 13 0 6 15 4
632745 4 128 2 4 17 0 29 0 0 6 0
632746 0 48 0 0 6 0 8 0 ©0 O 0
632861 ©0 172 0 4 6 10 21 12 6 3 2
632862 0 15 0 0 ©6 O 06 © 0 0 0
633017 0 31 0 4 3 0 0 5 0 9§ 3
633018 0 s 2 3 0 0 4 0 6 10 0
633027 0 8 2 0 7 0 9 0 6 0 0
633046 4 40 0 2 4 0 0 0 0 o 0
633047 6 112 0 0 11 0 8 19 i1 3 0
63348 0 9 2 2 8 2 § 0 11 7 2
633061 0 21 0 2 o0 © 2 0 0 O 0
63362 0 7 0 © 0 6 1 0 0 0 0
633107 0 10 o0 3 5 o0 3 0 0 2 0




Figure captions

e Iig. la. Histogram of bodtstrap p-values based on 600 simulations.
e Fig. 1b. Histogram of iterated bootstrap p-values based on 600 simulations.

e Fig. 2a. Quantile-quantile plot of bootstrap p-values based on 600 simula-

tions.

e Fig. 2b. Quantile-quantile plot of iterated bootstrap p-values based on 600

simulations.

¢ Fig. 3. Contribution rates to the 11 fisheries by the 18 groups. Line running

through plot is the estimated average contribution rate for the 18 groups.

e Fig. 4. Relative contribution rates to the 11 fisheries by the 18 groups.




Fig. 1a. Histogram of Bootstrap p-values (600 simulations)
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Fig. 1b. Histogram of lterated Bootstrap p-values (600 simulations)
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Fig. 2a QQ piot of Bootstrap p-vaiues vs Uniform({0,1) distribution
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Fig. 2b QQ plot of lterated Bootstrap p-values vs Uniform(0,1) distribution
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Fig. 3. Contribution rates to the 11 fisheries by the 18 groups
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Fig. 4. Relative contribution rates to the 11 fisheries by the 18 grou
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